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Abstract

This paper develops new theory and algorithms to recover signals that are
approximately sparse in some general (i.e., basis, frame, over-complete, or in-
complete) dictionary but corrupted by a combination of measurement noise
and interference having a sparse representation in a second general dictionary.
Particular applications covered by our framework include the restoration of
signals impaired by impulse noise, narrowband interference, or saturation,
as well as image in-painting, super-resolution, and signal separation. We de-
velop efficient recovery algorithms and deterministic conditions that guaran-
tee stable restoration and separation. Two application examples demonstrate
the efficacy of our approach.

Keywords: Sparse signal recovery, signal restoration, signal separation,
deterministic recovery guarantee, basis-pursuit denoising

1. Introduction

We investigate the problem of recovery of the coefficient vector x ∈ CNa

from the corrupted M -dimensional observations

z = Ax + Be + n, (1)

where A ∈ CM×Na and B ∈ CM×Nb are general (basis, frame, over-complete,
or in-complete) deterministic dictionaries, i.e., matrices whose columns have
unit Euclidean (or `2) norm. The vector x is assumed to be approximately
sparse, i.e., its main energy (in terms of the sum of absolute values) is con-
centrated in only a few entries. The M -dimensional signal vector is defined
as y = Ax. The vector e ∈ CNa represents interference and is assumed to be
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perfectly sparse, i.e., only a few entries are nonzero, and n ∈ CM corresponds
to measurement noise. Apart from the bound ‖n‖2 < ε, the measurement
noise is allowed to be arbitrary. The interference and noise components e
and n are allowed to depend on the vector x and/or the dictionary A.

The setting (1) also allows us to study signal separation, i.e., the separa-
tion of two distinct features Ax and Be from the noisy observation z. Here,
the vector e in (1) is also allowed to be approximately sparse and is used
to represent a second desirable feature (rather than undesired interference).
Signal separation amounts to simultaneously recovering the vectors x and e
from the noisy measurement z followed by computation of the individual
signal features Ax and Be.

1.1. Applications for the model (1)
Both the recovery and separation problems outlined above feature promi-

nently in numerous applications (see [1–17] and references therein), including:

• Impulse noise: The recovery of approximately sparse signals corrupted
by impulse noise [13] corresponds to recovery of x from (1) by setting
B = IM and associating the interference e with the impulse-noise vec-
tor. Practical examples include restoration of audio signals impaired
by click/pop noise [1, 2] and reading out from unreliable memory [14].

• Narrowband interference: Audio, video, or communication signals are
often corrupted by narrowband interference. A particular example
is electric hum, which typically occurs in improperly designed audio
equipment. Such impairments naturally exhibit a sparse representation
in the frequency domain, which amounts to setting B to the Fourier
matrix.

• Saturation: Non-linearities in amplifiers may result in signal saturation,
e.g., [7, 16, 17]. Here, instead of the signal vector y of interest, one
observes a saturated (or clipped) version z = y + e + n, where the
nonzero entries of e correspond to the difference between the saturated
signal and the original signal y. The noise vector n can be used to model
residual errors that are not captured by the interference component Be.

• Super-resolution and in-painting: In super-resolution [3, 15] and in-
painting [6, 8–10] applications, only a subset of the entries of the (full-
resolution) signal vector y = Ax is available. With (1), the interference
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vector e accounts for the missing parts of the signal, i.e., the locations
of the nonzero entries of e correspond to the missing entries in y and
are set to some arbitrary value. The missing parts of y are then filled
in by recovering x from z = Ax + e + n followed by computation of
the (full-resolution) signal vector y = Ax.

• Signal separation: The framework (1) can be used to model the de-
composition of signals into two distinct features. Prominent applica-
tion examples are the separation of texture from cartoon parts in im-
ages [4, 6] and separation of neuronal calcium transients from smooth
signals caused by astrocytes in calcium imaging [5]. In both applica-
tions, A and B are chosen such that each feature can be represented
by approximately sparse vectors in one dictionary. Signal separation
then amounts to simultaneously extracting x and e from z, where Ax
and Be represent the individual features.

In almost all of the applications outlined above, a predetermined (and
possibly optimized) dictionary pair A and B is used. It is therefore of signif-
icant practical interest to identify the fundamental limits on the performance
of restoration or separation from the model (1) for the deterministic setting,
i.e., assuming no randomness in the dictionaries, the signal, interference, or
the noise vector. Deterministic recovery guarantees for the special case of
perfectly sparse vectors x and e and no measurement noise have been stud-
ied in [12, 18]. The results in [12, 18] rely on an uncertainty relation for
pairs of general dictionaries and depend on the number of nonzero entries
of x and e, on the coherence parameters of the dictionaries A and B, and
on the amount of prior knowledge on the support of the signal and interfer-
ence vector. However, the algorithms and proof techniques used in [12, 18]
cannot be adapted for the general (and practically more relevant) setting
formulated in (1), which features approximately sparse signals and additive
measurement noise.

1.2. Contributions
In this paper, we generalize the recovery guarantees of [12, 18] to the

framework (1) detailed above. In particular, we provide novel, computation-
ally efficient restoration and separation algorithms, and derive corresponding
recovery guarantees for the deterministic setting. Our guarantees depend in
a natural way upon the number of dominant nonzero entries of x and e, on
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the coherence parameters of the dictionaries A and B, and on the Euclidean
norm of the measurement noise. Our results also depend on the amount of
knowledge on the location of the dominant entries available prior to recov-
ery. In particular, we investigate the following cases: 1) The locations of
the dominant entries of the approximately sparse vector x and the support
set of the perfectly sparse interference vector e are known (prior to recov-
ery), 2) only the support set of the interference vector e is known, and 3) no
support-set knowledge about x and e is available. Moreover, we present new
coherence-based bounds on the restricted isometry constants (RICs) for the
cases 2) and 3), which we then use to derive alternative recovery conditions
using the restricted isometry property (RIP) framework. We provide a com-
parison to the recovery conditions for perfectly sparse signals and noiseless
measurements presented in [12, 18]. Finally, we demonstrate the efficacy of
our approach with two representative applications: Restoration of audio sig-
nals that are impaired by a mixture of impulse noise and Gaussian noise, and
removal of scratches from old photographs.

1.3. Notation
Lowercase and uppercase boldface letters stand for column vectors and

matrices, respectively. The transpose, conjugate transpose, and (Moore–
Penrose) pseudo-inverse of the matrix M are denoted by MT , MH , and
M† =

(
MHM

)−1
MH , respectively. The kth entry of the vector m is [m]k,

and the kth column of M is mk and the entry in the kth row and `th col-
umn is designated by [M]k,`. The M × M identity matrix is denoted by
IM and the M × N all zeros matrix by 0M×N . The Euclidean (or `2) norm
of the vector x is denoted by ‖x‖2, ‖x‖1 =

∑
k|[x]k| stands for the `1-norm

of x, and ‖x‖0 designates the number of nonzero entries of x. The spec-
tral norm of the matrix M is ‖M‖2 =

√
λmax(MHM), where the minimum

and maximum eigenvalue of a positive-semidefinite matrix M are denoted
by λmin(M) and λmax(M), respectively. ‖M‖F =

√∑
k,`|[M]k,`|2 stands for

the Frobenius matrix norm. Sets are designated by upper-case calligraphic
letters. The cardinality of the set T is |T | and the complement of a set S
in some superset T is denoted by Sc. The support set of the vector m, i.e.,
the index set corresponding to the nonzero entries of m, is designated by
supp(m). We define the M ×M diagonal (projection) matrix PS for the set
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S ⊆ {1, . . . ,M} as follows:

[PS ]k,` =

{
1, k = ` and k ∈ S
0, otherwise,

and mT = PTm. The matrix MT is obtained from M by retaining the
columns of M with indices in T and the |T |-dimensional vector [m]T is
obtained analogously. For x ∈ R, we set [x]+ = max{x, 0}.

1.4. Outline of the paper
The remainder of the paper is organized as follows. In Section 2, we

briefly summarize the relevant prior art. Our new recovery algorithms and
corresponding recovery guarantees are presented in Section 3. An alterna-
tive set of recovery guarantees obtained through the RIP framework and a
comparison to existing recovery guarantees are provided in Section 4. The
application examples are shown in Section 5, and we conclude in Section 6.

2. Relevant Prior Art

In this section, we review the relevant prior art in recovering sparse sig-
nals from noiseless and noisy measurements in the deterministic setting and
summarize the existing guarantees for recovery of sparsely corrupted signals.

2.1. Recovery of perfectly sparse signals from noiseless measurements
Recovery of a vector x ∈ CNa from the noiseless observations y = Ax

with A over-complete (i.e., M < Na) corresponds to solving an underde-
termined system of linear equations, which is well-known to be ill-posed.
However, assuming that x is perfectly sparse (i.e., that only small number of
its entries are nonzero) enables us to uniquely recover x by solving

(P0) minimize ‖x̃‖0 subject to y = Ax̃.

Unfortunately, P0 has a prohibitive (combinatorial) computational complex-
ity, even for small dimensions Na. One of the most popular and computation-
ally tractable alternative to solving P0 is basis pursuit (BP) [19–24], which
corresponds to the convex program

(BP) minimize ‖x̃‖1 subject to y = Ax̃.
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Recovery guarantees for P0 and BP are usually expressed in terms of the
sparsity level nx = ‖x‖0 and the coherence parameter of the dictionary A,
which is defined as

µa = max
k,`,k 6=`

∣∣aHk a`∣∣ .
Specifically, a sufficient condition for x to be the unique solution of P0 and
for BP to deliver this solution1 is [21, 22, 24]

nx <
1

2

(
1 +

1

µa

)
. (2)

2.2. Recovery of approximately sparse signals from noisy measurements
For the case of bounded (otherwise arbitrary) measurement noise, i.e.,

z = Ax + n with ‖n‖2 ≤ ε, recovery guarantees based on the coherence
parameter µa were developed in [27–31]. The corresponding recovery con-
ditions mostly treat the case of perfectly-sparse signals, i.e., where only a
small fraction of the entries x are nonzero. In almost all practical applica-
tions, however, only a few entries of x are actually zero. Nevertheless, many
real-world signals exhibit the property that most of the signal’s energy (in
terms of the sum of absolute values) is concentrated in only a few entries.
We refer to this class of signals as approximately sparse in the remainder of
the paper. For such signals, the support set associated to the best nx-sparse
approximation (in `1-norm) corresponds to

X̂ = suppnx
(x) = arg min

X̃∈Σnx

∥∥x− xX̃
∥∥

1
,

where the set Σnx contains all support sets of size nx corresponding to per-
fectly nx-sparse vectors having the same dimension as x. A particular sub-
class of approximately sparse signals is the set of compressible signals, whose
approximation error decreases according to a power law with exponent s > 0
as nx increases [32].

The following theorem provides a sufficient condition for which a suitably
modified version of BP, known as BP denoising (BPDN) [19], stably recovers
an approximately sparse vector x from the noisy observation z.

1The condition (2) also ensures perfect recovery using orthogonal matching pur-
suit (OMP) [24–26], which is, however, not further investigated in this paper.
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Theorem 1 (BP denoising [31, Thm. 2.1]). Let z = Ax+n, ‖n‖2 ≤ ε,
and X = suppnx

(x). If (2) is met, then the solution x̂ of the convex program

(BPDN) minimze ‖x̃‖1 subject to ‖z−Ax̃‖2 ≤ η

with ε ≤ η satisfies

‖x− x̂‖2 ≤ C0(ε+ η) + C1‖x− xX‖1 , (3)

where both (non-negative) constants C0 and C1 depend on µa and nx.

Proof. The proof in [31, Thm. 2.1] is detailed for perfectly sparse vectors
only. Since some of the proofs presented in the remainder of the paper are for
approximately sparse signals and noisy measurements, we present the general
case in Appendix A.

We emphasize that perfect recovery of x is, in general, impossible in the
presence of bounded (but otherwise arbitrary) measurement noise n. In the
remainder of the paper, we consider stable recovery instead, i.e., in a sense
that the `2-norm of the difference between the estimate x̂ and the ground
truth x is bounded from above by the `2-norm of the noise ‖n‖2 and the
best nx-sparse approximation in `1-norm sense, i.e., as in (3). We finally
note that Theorem 1 generalizes the results for noiseless measurements and
perfectly sparse signals in [21, 22, 24] using BP (cf. Section 2.1). Specifically,
for ‖n‖2 = 0 and ‖x− xX‖1 = 0, BPDN with η = 0 corresponds to BP
and (3) results in ‖x− x̂‖2 = 0, which ensures perfect recovery of the vector x
whenever (2) is met.

2.3. Recovery guarantees for perfectly sparse signals from sparsely corrupted
and noiseless measurements

A large number of restoration and separation problems occurring in prac-
tice can be formulated as sparse signal recovery from sparsely corrupted
signals using the input-output relation (1). Special cases of the general
model (1) were studied in [7, 11–13, 18, 33–37].

Probabilistic recovery guarantees. Recovery guarantees for the probabilistic
setting (i.e., recovery of x is guaranteed with high probability) for random
Gaussian matrices, which are of particular interest for applications based on
compressive sensing (CS), were reported in [7, 11, 35, 37]. Similar results
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for randomly sub-sampled unitary matrices A were developed in [36]. The
problem of sparse signal recovery from a particular nonlinear measurement
process in the presence of impulse noise was considered in [13], and prob-
abilistic results for signal detection based on `1-norm minimization in the
presence of impulse noise was investigated in [34]. In the remainder of the
paper, however, we will consider the deterministic setting exclusively.

Deterministic recovery guarantees. Recovery guarantees in the deterministic
setting for noiseless measurements and signals being perfectly sparse, i.e.,
the model z = Ax + Be, were studied in [12, 18, 33]. In [33], it was shown
that when A is the Fourier matrix, B = IM and when the support set of
the interference e is known, perfect recovery of x is possible if 2nxne < M ,
where ne = ‖e‖0. The case of A and B being arbitrary dictionaries (whereas
x and e are assumed to be perfectly sparse and for noiseless measurements)
was studied for different cases of support-set knowledge in [12, 18]. There,
deterministic recovery guarantees were presented, which depended upon the
number of nonzero entries nx and ne in x and e, respectively, and on the co-
herence parameters µa and µb of A and B, as well as on the mutual coherence
between the dictionaries A and B, which is defined as

µm = max
k,`

∣∣aHk b`∣∣ .
A summary of the recovery guarantees presented in [12, 18] (along with the
novel recovery guarantees presented in the next section) is given in Table 1,
where, for the sake of simplicity of exposition, we define the function

f(u, v) = [1− µa(u− 1)]+ [1− µb(v − 1)]+ .

We emphasize that the results presented in [12, 18] are for perfectly sparse
and noiseless measurements only, and furthermore, the algorithms and proof
techniques cannot be adapted for the more general setting proposed in (1). In
order to gain insight into the practically more relevant case of approximately
sparse signals and noisy measurements, we next develop new restoration and
separation algorithms for several different cases of support-set knowledge and
provide corresponding recovery guarantees. Our results complement those in
[12, 18] (cf. Table 1).

3. Main Results

We now develop several computationally efficient methods for restoration
or separation under the model (1) and derive corresponding recovery condi-
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Table 1: Summary of deterministic recovery guarantees for perfectly/approximately sparse
signals that are corrupted by interference in the absence/presence of measurement noise.

Support-set Recovery condition Perfectly sparse Approx. sparse
knowledge and no noise and noise

x and e nxneµ
2
m<f(nx, ne) [12, Thm. 3] Theorem 2

e only 2nxneµ
2
m<f(2nx, ne) [12, Thms. 4 and 5] Theorem 3

None [18, Eq. 12]a [18, Thm. 3] —
Eq. 13 — Theorem 4

aThe recovery condition is valid for BP and OMP; a less restrictive condition for P0 is
given in [18, Thm. 2].

tions that guarantee their stability. Our recovery guarantees depend on the
`2-norm of the noise vector and on the amount of knowledge on the domi-
nant nonzero entries of the signal and noise vectors. Specifically, we consider
the following three cases: 1) Direct restoration: The locations of the entries
corresponding to the best nx-sparse approximation of x and the support set
of the (perfectly sparse) interference vector e are known prior to recovery, 2)
BP restoration: Only the support set of e is known, 3) BP separation: No
knowledge about x and e is available, except for the fact that each vector
exhibits an approximately an sparse representation in either A or B.

3.1. Direct restoration: Support-set knowledge of x and e

We start by addressing the case where the locations of the dominant
entries (in terms of absolute value) of the approximately sparse vector x and
the support set E associated with the perfectly sparse interference vector e
are known prior to recovery. This scenario is relevant, for example, in the
restoration of old phonograph records [1, 2], where one wants to recover a
bandlimited signal that is impaired by impulse noise, e.g., clicks and pops.
The occupied frequency band of phonograph recordings is typically known
prior to recovery. In this case, one may assume A to be the M -dimensional
discrete cosine transform (DCT) matrix and B = IM . The locations of the
clicks and pops, i.e., the support set E = supp(e), can be determined (prior
to recovery) using the techniques described in [2], for example.

The restoration approach considered for this setup is as follows. Since E
and X = suppnx

(x) are both known prior to recovery, we start by projecting
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the noisy observation vector z onto the orthogonal complement of the range
space spanned by BE , which eliminates the sparse corruptions caused by the
interference e. In particular, we consider

REz = RE(Ax + BeE + n) = REAx + REn, (4)

where RE = IM −BEB
†
E is the projector onto the orthogonal complement of

the range space of BE , and we used the fact that REBeE = 0M×1. Next, we
separate (4) by exploiting the fact that X is known

REz = REA(xX + xX c) + REn

= REAX [x]X + REAxX c + REn

and isolate the dominant entries [x]X as follows:

(REAX)†REz = [x]X + (REAX)†RE(AxX c + n). (5)

In the case where both vectors xX c and n are equal to zero, we obtain

(REAX)†REz = [x]X , (6)

and therefore the dominant entries of x are recovered perfectly by this ap-
proach. Note that conjugate gradient methods (see, e.g., [38]) offer an effi-
cient way of computing (6).

The following theorem provides a sufficient condition for (REAX)†RE
to exist and for which the vector x can be restored stably from the noisy
measurement z using the direct restoration (DR) procedure outlined above.

Theorem 2 (Direct restoration). Let z = Ax + Be + n with ‖n‖2 ≤ ε,
e perfectly ne-sparse with support set E, and X = suppnx

(x). Furthermore,
assume that E and X are known prior to recovery. If

nxneµ
2
m < f(nx, ne), (7)

then the vector x̂ computed according to

(DR) [x̂]X = (REAX )†REz, [x̂]X c = 0|X c|×1

with RE = IM −BEB
†
E satisfies

‖x− x̂‖2 ≤ C3ε+ C4‖x− xX‖1 ,

where the (non-negative) constants C3 and C4 depend on the coherence pa-
rameters µa, µb, and µm, and on the sparsity levels nx and ne.
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Proof. The proof is given in Appendix B.

Theorem 2 and in particular (7) provides a sufficient condition on the
number nx of dominant entries of x for which DR enables the stable recovery
of x from z, given the coherence parameters µa, µb, and µm, and the number
of sparse corruptions ne. Specifically, (7) states that for a given number of
sparse corruptions ne, the smaller the coherence parameters µa, µb, and µm,
the more dominant entries of x can be recovered stably from z. The case
that guarantees the recovery of the largest number nx of dominant entries in
x is when A and B are orthonormal bases (ONBs) (i.e., µa = µb = 0) that
are maximally incoherent (i.e., µm = 1/

√
M); this is the case for the Fourier–

identity pair, whence the recovery condition (7) corresponds to nxne < M .
The recovery guarantee in Theorem 2 generalizes that in [12, Thm. 3]

to approximately sparse signals and noisy measurements. In particular, for
‖n‖2 = 0 and ‖x− xX‖1 = 0, we have ε = 0 and that DR perfectly recovers x
if (7) is met. Since (7) is identical to the condition [12, Thm. 3] (cf. Table 1)
we see that considering approximately sparse signals and (bounded) mea-
surement noise does not result in a more restrictive recovery condition. We
finally note that the recovery condition in (7) was shown in [12] to be tight for
certain comb signals in the case where A is the Fourier matrix and B = IM .

3.2. BP restoration: Support-set knowledge of e only
Next, we find conditions guaranteeing the stable recovery in the setting

where the support set of the interference vector e is known prior to recov-
ery. A prominent application for this setting is the restoration of saturated
signals [7, 16]. Here, no knowledge on the locations of the dominant en-
tries of x is required. The support set E of the sparse interference vector
can, however, be easily identified by comparing the measured signal entries
[z]i, i = 1, . . . ,M , to a saturation threshold. Further application examples
for this setting include the removal of impulse noise [1, 2, 14], in-painting,
and super-resolution [3, 8, 15] of signals admitting an approximately sparse
representation in some arbitrary dictionary A.

The recovery procedure for this case is as follows. Since E is know prior
to recovery, we may recover the vector x by projecting the noisy observation
vector z onto the orthogonal complement of the range space spanned by BE
(cf. Section 3.1). This projection eliminates the sparse noise and leaves us
with a sparse signal recovery problem similar to that in Theorem 1. In
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particular, we consider recovery from

REz = RE(Ax + BeE + n) = REAx + REn, (8)

whereRE = IM−BEB†E , and we used the fact thatREBeE = 0M×1. Note that
the idea of projecting the observation vector onto the orthogonal complement
of the space spanned by the active columns of B was put forward in [7], where
the special case of B being an ONB was considered. The following theorem
provides a sufficient condition that guarantees the stable restoration of the
vector x from (8).

Theorem 3 (BP restoration). Let z = Ax + Be + n with ‖n‖2 ≤ ε.
Assume e to be perectly ne-sparse and E = supp(e) to be known prior to
recovery. Furthermore, let X = suppnx

(x). If

2nxneµ
2
m < f(2nx, ne), (9)

then the result x̂ of BP restoration

(BP-RES)

{
minimize ‖x̃‖1

subject to ‖RE(z−Ax̃)‖2 ≤ η

with RE = IM −BEB
†
E and ε ≤ η satisfies

‖x− x̂‖2 ≤ C5(ε+ η) + C6‖x− xX‖1 ,

where the (non-negative) constants C5 and C6 depend on the coherence pa-
rameters µa, µb, and µm, and on the sparsity levels nx and ne.

Proof. The proof is given in Appendix C.

The recovery condition (9) provides a sufficient condition on the number
nx of dominant entries of x, for which BP-RES can stably recover x from z.
The condition depends on the coherence parameters µa, µb, and µm, and the
number of sparse corruptions ne. As for the case of DR, the situation that
guarantees that the largest number nx of dominant coefficients in x will be
recovered stably using BP-RES, is when A and B are maximally incoherent
ONBs. In this situation, the recovery condition (9) reduces to 2nxne < M ,
which is two times more restrictive than that for DR (see [12] for a detailed
discussion on this factor-of-two penalty).

The following observations are immediate consequences of Theorem 3:
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• If the vector x is perfectly nx-sparse, i.e., ‖x− xX‖1 = 0, and no
measurement noise is present, i.e., ε = 0, then BP-RES using η = 0
perfectly recovers x whenever (9) is satisfied. Note that two different
restoration procedures were developed for this particular setting in [12,
Thms. 4 and 5]. Both methods enable perfect recovery under exactly
the same conditions (cf. Table 1). Hence, generalizing the recovery
procedure to approximately sparse signals and measurement noise does
not incur a penalty in terms of the recovery condition.

• The restoration method in [12, Thm. 5] requires a column-normalization
procedure to guarantee perfect recovery under the condition (9). Since
in this special case, BP-RES (with η = 0) corresponds to BP, Theo-
rem 3 implies that this normalization procedure is not necessary for
guaranteeing perfect recovery under (9). Note, however, that this ob-
servation does not apply to orthogonal matching pursuit (see [39] for
more details).

We finally point out that the recovery condition in (9) was shown in [12]
to be tight for particularly-chosen comb signals in the case where A is the
Fourier matrix and B = IM .

3.3. BP separation: No knowledge on the support sets
We finally consider the case where no knowledge about the support sets

of the approximately sparse vectors x and e is available. A typical appli-
cation scenario is signal separation [4, 6], e.g., the decomposition of audio,
image, or video signals into two or more distinct features, i.e., in a part
that exhibits an approximately sparse representation in the dictionary A
and another part that exhibits an approximately sparse representation in B.
Decomposition then amounts to performing simultaneous recovery of x and
e from z = Ax + Be + n, followed by computation of the individual signal
features according to Ax and Be. The main idea underlying this signal-
separation approach is to rewrite (1) as

z = Dw + n (10)

whereD = [A B ] is the concatenated dictionary ofA and B and the stacked
vector w = [xT eT ]T . Signal separation now amounts to performing BPDN
on (10) for recovery of w from z, which is also known as the synthesis separa-
tion problem for microlocal analysis (see [40, 41] and the references therein).
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A straightforward way to arrive at a corresponding deterministic recovery
guarantee for this problem is to consider D as the new dictionary with the
dictionary coherence defined as

µd = max
i,j,i6=j

∣∣dHi dj∣∣ = max
{
µa, µb, µm

}
. (11)

One can now use BPDN to recover w from (10) and invoke Theorem 1 with
the recovery condition in (2), resulting in

w = nx + ne <
1

2

(
1 +

1

µd

)
. (12)

However, it is important to realize that (12) ignores the structure underlying
the dictionary D, i.e., it does not take into account the fact that D is a
concatenation of two dictionaries that are characterized by the coherence
parameters µa, µb, and µm. Hence, the recovery guarantee (12) does not
provide insight into which pairs of dictionaries A and B are most useful for
signal separation. The following theorem takes into account the structure
underlying D, enabling us to gain insight into which pairs of dictionaries A
and B support signal separation.

Theorem 4 (BP separation). Let z = Dw + n, with D = [A B ], w =
[ aT eT ]T , and ‖n‖2 ≤ ε. The dictionary D is characterized by the coherence
parameters µa, µb, µm, and µd, and we assume µb ≤ µa without loss of
generality. Furthermore, let W = suppw(w). If

w < max

{
2(1 + µa)

µa + 2µd +
√
µ2
a + µ2

m

,
1 + µd

2µd

}
, (13)

then the solution ŵ of BP separation

(BP-SEP)

{
minimize ‖w̃‖1

subject to ‖z−Dw̃‖2 ≤ η

using ε ≤ η satisfies

‖w − ŵ‖2 ≤ C7(ε+ η) + C8‖w −wW‖1 , (14)

with the (non-negative) constants C7 and C8.
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Proof. The proof is given in Appendix D.

The recovery condition (13) refines that in (12); in particular, considering
the two-ONB setting for which µa = µb = 0 and µm = µd. In this case, the
straightforward recovery condition (11) corresponds to w < (1 + 1/µd)/2,
whereas the one for BP separation (13) is

w <
2

3µd
. (15)

Hence, (13) guarantees the stable recovery for a larger number of dominant
entries w in the stacked vector w. Recovery guarantees for perfectly sparse
signals and noiseless measurements in the two-ONB setting were developed
in [23, 24, 42]. The corresponding recovery condition w < (

√
2−0.5)/µd turns

out to be better (i.e., less restrictive) than the recovery condition for approxi-
mately sparse signals and measurement noise provided in (15). Whether this
behavior is a fundamental result of considering approximately sparse signals
and noisy measurements or is an artifact of the proof technique remains an
open research problem.

4. Recovery Guarantees from the RIP-Framework and Comparison

In this section, we develop alternative recovery guarantees for BP-RES
and BP-SEP using results from the restricted isometry property (RIP) frame-
work. We furthermore provide a comparison with the (coherence-based) re-
covery guarantees obtained in the previous section and the guarantees for
perfectly sparse signals and noiseless measurements presented in [12, 18] (re-
call Table 1).

4.1. RIP-based recovery guarantees
An alternative way of obtaining deterministic recovery guarantees for ap-

proximately sparse signals and measurement noise, i.e., for z = Ax + n, has
been developed under the RIP framework [34, 43–47]. There, the dictio-
nary A is characterized by restricted isometry constants (RICs) instead of
the coherence parameter µa.

Definition 1 ([34]). For each integer nx ≥ 1, the RIC δnx of A is the
smallest number such that

(1− δnx) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δnx) ‖x‖2
2 (16)

holds for all perfectly nx-sparse vectors x.
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The corresponding recovery conditions, which guarantee stable recovery
of x with ‖n‖2 ≤ ε using BDPN, are, e.g., of the form i) δ2nx <

√
2− 1 [44] or

ii) δnx < 0.307 [47]. The main issue with such recovery conditions is the fact
that the RICs cannot be computed efficiently, in general. In order to arrive
at recovery conditions that are explicit in the number of nonzero entries nx,
one may bound the RIC (16) from above using the coherence parameter µa
as [31, 45]

δnx ≤ µa(nx − 1) (17)

which can then be used to arrive at the corresponding recovery conditions
i) nx < (1 + (

√
2 − 1)/µa)/2 or ii) nx < 1 + 0.307/µa. Both of these recov-

ery conditions are more restrictive than that in (2). Nevertheless, recovery
guarantees obtained through the RIP framework turn out to be useful for
deriving probabilistic recovery conditions (guaranteeing recovery with high
probability) in the field of compressive sensing (CS) [48, 49]. The coherence-
based bound in (17) is useful also because it puts limits on the RIC that are
explicit in nx.

4.2. Recovery guarantees for sparsely corrupted signals
We next provide coherence-based bounds on the RIC constants for BP

restoration and BP separaion, and derive corresponding alternative recovery
guarantees using results obtained in the RIP framework [44, 47].

Recovery guarantee for BP restoration. As a byproduct of the proof for BP-
RES detailed in Appendix C, the following coherence-based upper bound on
the RIC for the matrix Ã = REA was obtained:

Lemma 5 (RIC bound for Ã). Let Ã = REA with RE = IM − BEB
†
E .

For each integer nx ≥ 1, the smallest number δnx such that

(1− δnx) ‖x‖2
2 ≤

∥∥∥Ãx
∥∥∥2

2
≤ (1 + δnx) ‖x‖2

2

holds for all perfectly nx-sparse vectors x ∈ CNa, is bounded from above by

δnx ≤ µa(nx − 1) +
nxneµ

2
m

[1− µb(ne − 1)]+
. (18)
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Combining the bound (18) with the condition δnx < 0.307 from [47] en-
ables us to obtain the following recovery condition:

nx <
(0.307 + µa)[1− µb(ne − 1)]+

µa[1− µb(ne − 1)]+ + neµ2
m

(19)

that guarantees the stable restoration of x from REz = Ãx+REn using BP-
RES. We emphasize that for µa < 1− 2 · 0.307 ≈ 0.386 the condition (19) is
more restrictive than the condition (9), which reads

nx <
1

2

(1 + µa)[1− µb(ne − 1)]+

µa[1− µb(ne − 1)]+ + neµ2
m

.

Hence, for most relevant values of the coherence parameter µa, the recovery
condition in (9) is superior (in a sense of enabling the recovery of a larger
number nx of dominant coefficients in x) to that obtained using the RIP
framework.

Recovery guarantee for BP separation. During the proof for BP separation
detailed in Appendix D, the following coherence-based upper bound on the
RIC for the concatenated dictionary D = [A B ] was obtained.

Lemma 6 (RIC bound for D). Let D = [A B ] be characterized by µa,
µb, µm, and µd, and assume µb ≤ µa without loss of generality. For each
integer w ≥ 1 the smallest number δw such that

(1− δw) ‖w‖2
2 ≤ ‖Dw‖2

2 ≤ (1 + δw) ‖w‖2
2

holds for all perfectly w-sparse vectors w ∈ CNa+Nb, is bounded from above
by

δw ≤ min

{
1

2

(
µa(w − 2) + w

√
µ2
a + µ2

m

)
, µd(w − 1)

}
. (20)

As in Section 4.2, we use the right hand side of (20) in combination with
the recovery condition δw < 0.307 [47], to obtain a recovery guarantee for
signal separation. In particular, BP-SEP guarantees stable recovery if

w < max

{
2(0.307 + µa)

µa +
√
µ2
a + µ2

m

, 1 +
0.307

µd

}
. (21)
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Figure 1: Comparison of the recovery conditions for µm = µd = 0.1 and µa = µb = 0.04.

As in the case of BP restoration, this condition turns out to be more re-
strictive than that in (13) for most relevant cases. However, the difference
between the recovery condition in (21) and that in (13) is small, in general.
To see this, consider the two-ONB case, i.e., µa = µb = 0 and µm = µd.
Here, the recovery condition (21) corresponds to w < 0.614/µd, which is only
slightly more restrictive than the condition w < 2/(3µd) given in (15).

4.3. Comparison of the recovery guarantees
Fig. 1 compares the recovery conditions for the general model (1) to those

obtained in [12, 18] for perfectly sparse signals and noiseless measurements
(see also Table 1). We set µd = µm = 0.1 and µa = µb = 0.04, and compare
the three different cases analyzed in Section 3. The following observations
can be made:

• Direct restoration: For DR, no recovery guarantees are available through
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the RIP framework. The recovery conditions for the general model (1)
detailed in (7) and that in [12, Eq. 11] for perfectly sparse signals
and noiseless measurements coincide. Hence, the generalization to ap-
proximately sparse signals and measurement noise does not entail a
degradation in terms of the corresponding recovery condition.

• BP restoration: In this case, the recovery conditions for the general
setup considered in this paper and the condition [12, Eq. 14] for per-
fectly sparse signals and noiseless measurements also coincide. Hence,
generalizing the results does not incur a loss in terms of the recov-
ery conditions. As mentioned in Section 4.2, the recovery condition
obtained trough the RIP framework turns out to be more restrictive.

• BP separation: In this case, we see that all of the recovery conditions
differ. In particular, the condition [18, Eq. 13] for perfectly sparse
signals and noiseless measurements is less restrictive that that for the
general case (1). Furthermore, the recovery condition (21) obtained in
the RIP framework turns out to be the most restrictive. However, the
differences between the three recovery conditions are rather small.

In summary, we see that having more knowledge on the support sets prior
to recovery yields less restrictive recovery conditions. This intuitive behavior
can also be observed in practice and is illustrated in Section 5.

We finally emphasize that all of the recovery conditions derived above are
deterministic in nature and therefore conservative in the sense that, in prac-
tice, recovery often succeeds for sparsity levels nx and ne much higher than
the corresponding guarantees indicate. In particular, it is well-known that
deterministic recovery guarantees are fundamentally limited by the so-called
square-root bottleneck, e.g., [12, 18, 50], as they are valid for all dictionary
pairs A and B with given coherence parameters, and all signal and interfer-
ence realizations with given sparsity levels nx and ne. Nevertheless, we next
show that our recovery conditions enable us to gain considerable insights
into practical applications; i.e., they are useful for identification of appropri-
ate dictionary pairs (e.g., being sufficiently incoherent) that should be used
for signal restoration or separation.

5. Application Examples

We now develop two application examples to illustrate the main results
of the paper. First, we show that direct restoration, BP restoration, and BP

19



separation can be used for simultaneous denoising and declicking of corrupted
speech signals. Then, we illustrate the impact of support-set knowledge for
a sparsity-based in-painting application.

5.1. Simultaneous denoising and declicking
In this example, we attempt the recovery of a speech signal that has been

corrupted by a combination of additive Gaussian noise and impulse noise.
To this end, we corrupt a 9.5 s segment (44 100 kHz and 16 bit) from the
speech signal in [51] by adding zero-mean i.i.d. Gaussian noise and impulse
noise. The variance of the additive noise is chosen such that the mean-
squared error (MSE) between the L-dimensional original audio signal y and
the noisy version ỹ, defined as

MSE = 10 log10

(
‖y − ỹ‖2

2 /L
)
,

is −30 decibel (dB). The impulse interference (used to model the clicking
artifacts in the audio signal) is generated as follows: We corrupt 10% of the
samples and chose the locations of the random clicks, which are modeled by
the interference vector e, uniformly at random. We then generate the clicks
at these locations by adding i.i.d. zero-mean Gaussian random samples with
variance 0.1 to the noisy signal (whose maximum amplitude was normalized
to +1).

Recovery procedure. Recovery is performed with overlapping blocks of di-
mension M = 1024. The amount of overlap between adjacent blocks is 64
samples. We set A to the 1024 × 1024-dimensional DCT matrix, B = IM ,
and perform recovery based on z = Ax + e + n. The main reasons for using
the DCT matrix in this example are i) the speech signal is approximately
sparse in the DCT basis and ii) the mutual coherence between the identity
and the DCT is small, i.e., µm = 1/

√
512, which leads to less restrictive

recovery conditions (7), (9), and (13). For all three recovery methods, we
first compute an estimate x̂ of x (and of e in the case of BP separation)
and then compute an estimate of the denoised speech signal according to
ŷ = Ax̂. In order to reduce undesired artifacts occurring at the boundaries
between two adjacent blocks, we add and overlap the recovered blocks using
a raised-cosine window function when resynthesizing the entire speech signal.
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(a) Original signal (b) Noisy signal (MSE = −30.0dB)

(c) Noise and clicks (MSE = −19.7dB)

direct restoration

(d) Direct restoration (MSE = −34.7dB)

(e) BP restoration (MSE = −33.3dB) (f) BP separation (MSE = −31.6dB)

Figure 2: Mean squared error (MSE) results of simultaneous reduction of Gaussian and
impulse interference in a corrupted speech signal (the x-axes correspond to sample indices,
the y-axes to magnitudes).
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Discussion of the results. Fig. 2 shows snapshots of the corruption and recov-
ery procedure and the associated MSE results. The corrupted signal, which
is impaired by Gaussian noise and impulse noise, has an MSE of −19.7dB.
The individual results of the three recovery procedures analyzed in this paper
are as follows:

• Direct restoration: In this case (see Fig. 2(d)), the locations E of the
impulse noise realizations are assumed to be known prior to recovery.
We set X = {1, . . . , 192}, assuming that the speech signal occupies only
the lowest 192 frequencies. The MSE between the original signal and
the one recovered through DR corresponds to −34.7dB and, hence, DR
is able to improve the MSE by 15 dB (compared to the signal that is
impaired by Gaussian and impulse noise).

• BP restoration: Here, we assume that the locations of the impulse
noise spikes E are known prior to recovery but nothing is known about
x (except for the fact that it allows for an approximately sparse rep-
resentation in A). We perform BP restoration with η = 0.6, which
results in an MSE of −33.3dB (see Fig. 2(e)). Note that the parame-
ter η determines the amount of denoising (for the Gaussian noise) and
can be used to tune the resulting MSE.

• BP separation: In this case we assume that nothing is known about
the support sets of either x or e. We use BP separation with η = 0.4
and discard the recovered error component e; the resulting MSE corre-
sponds to −31.6dB (see Fig. 2(f)). As it is the case for BP restoration,
η determines the amount of denoising (of the Gaussian noise compo-
nent). BP separation achieves surprisingly good recovery performance
(compared to DR and BP-RES), while being completely blind to the
locations of the sparse corruptions. Hence, BP separation offers an
elegant way to mitigate impulse noise in speech signals, without re-
quiring sophisticated algorithms that detect the locations of the sparse
corruptions.

This application example shows that more knowledge on the support sets
X and/or E leads to improved recovery results (i.e., smaller MSE). This
intuitive behavior has been observed in [12] for perfectly sparse signals and
noiseless measurements. We emphasize that DR, BP restoration, and BP
separation are all able to simulatenously reduce Gaussian noise and impulse
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interference as the resulting MSEs are all smaller than−30dB (corresponding
to the MSE of the noisy signal). The recovery procedure one should use in
practice depends on the amount of support-set knowledge available prior to
recovery.

We finally note that reduction of noise and clicks in impaired audio sig-
nals is a well-studied topic in the literature (see, e.g., [2] and references
therein). However, most of the established methods rely on Bayesian es-
timation techniques, e.g., [2, 52, 53], which differ from the sparsity-based
approach proposed here. Sparsity-based algorithms for restoration of im-
paired audio signals have been proposed recently in [16, 17]; however, no
recovery guarantees are available for the proposed OMP-based restoration
algorithm. We emphasize that virtually all proposed methods require knowl-
edge of the locations of the sparse corruptions prior to recovery, whereas our
results for BP separation show that sparse errors can effectively be removed
blindly from speech signals. The main goal of this example is to illustrate
the performance our algorithms and not to benchmark the performance rela-
tive to existing methods; a detailed performance and restoration-complexity
comparison with existing methods for simultaneous denosing and declicking
is left for future work.

5.2. Removal of scratches in old photographs
We now consider a simple sparsity-based in-painting application. While

a plethora of in-painting methods have been proposed in the literature (see,
e.g., [6, 8–10] and the references therein), our goal here is to not to benchmark
our performance vs. theirs but rather to illucidate the differences between
BP restoration and BP separation, i.e., to quantify the impact of support-
set knowledge on the recovery performance. In this particular example, we
intend to remove scratches from old photographs. To this end, we corrupt a
512× 512 greyscale image by adding a mask containing artificially generated
scratch patterns. This procedure corrupts 15% of the image. In order to
demonstrate the recovery performance for approximately sparse signals, the
image was not sparsified prior to adding the corruptions (which is in contrast
to the in-painting example shown in [12]). The MSE between the original
photo (shown in Fig. 3(a)) and the corrupted version (shown in Fig. 3(b))
corresponds to −16.7dB.

Restoration procedure. Scratch removal proceeds as follows. For BP restora-
tion and BP separation, we assume that the image admits an approximately
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(a) Original (courtesy of NASA [54]) (b) Corrupted photo (MSE = −16.7dB)

(c) Result of BP-RES (MSE = −29.2dB) (d) Result of BP-SEP (MSE = −19.4dB)

Figure 3: Example of using BP restoration (BP-RES) and BP separation (BP-SEP) for
removal of scratches from old photographs.
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sparse representation in the two-dimensional DCT basis A, whereas the in-
terference is assumed to be sparse in the identity basis B = IM . Recovery
is performed on the basis of the full 512 × 512 pixel image, i.e., we have
M = 5122 corrupted measurements. For BP restoration, we assume that
the locations of the scratches are known prior to recovery, whereas no such
knowledge is required for BP separation. For BP restoration we recover x̂
(for BP separation we additionally recover ê) and then compute an estimate
of the image as ŷ = Ax̂. Since we consider noiseless measurements, we
set η = 0 for both recovery procedures. Note that DR is not considered in
this example as information on the location of the dominant entries of x is
difficult to acquire in practice.

Discussion of the results. Fig. 3 shows results of the corruption and recov-
ery procedure along with the associated MSE values. For BP restoration,
we see that the recovered image has an MSE of −29.2dB and well approx-
imates the ground truth. For BP separation, the MSE improves over the
corrupted image, but in parts where large areas of the image are corrupted,
blind removal of scratches fails. Hence, knowing the locations of the sparse
corruptions leads to a significant advantage in terms of MSE and is therefore
highly desirable for sparsity-based in-painting methods.

We finally note that the recovery conditions (7), (9), and (13) turn out to
be useful in practice as they show that the dictionary A must both i) sparsify
the signal to be recovered and ii) be incoherent with the interference dictio-
nary B. Note that the second requirement is satisfied for the DCT–Identity
pair used here, whereas other transform bases typically used to sparsify im-
ages (i.e., to satisfy the first requirement), such as wavelet bases, exhibit
high mutual coherence with the identity basis. Hence, our recovery guaran-
tees help to identify good dictionary pairs for a variety of restoration and
separation problems.

6. Conclusions

In this paper, we have generalized the results presented in [12, 18] for
the recovery of perfectly sparse signals that are corrupted by perfectly sparse
interference to the much more practical case of approximately sparse sig-
nals and noisy measurements. We proposed novel restoration and separation
algorithms for three different cases of knowledge on the location of the dom-
inant entries (in terms of absolute value) in the vector x, namely 1) direct
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restoration, 2) BP restoration, and 3) BP separation. Moreover, we devel-
oped deterministic recovery guarantees for all three cases. The application
examples demonstrated that our recovery guarantees explain which dictio-
nary pairs A and B are most suited for sparsity-based signal restoration or
separation. Our comparison of the presented deterministic guarantees with
similar ones obtained using the restricted isometry property (RIP) frame-
work and to those provided in [12, 18] reveals that, for BP restoration and
BP separation, considering the general model does not result in more restric-
tive recovery conditions. For BP separation, however, the recovery conditions
for the general model considered here turn out to be slightly more restrictive
as it is for perfectly sparse signals and noiseless measurements.

There are many avenues for follow-on work. The derivation of proba-
bilistic recovery guarantees (with randomness in the signals rather than in
the dictionaries) leading to recovery conditions guaranteeing restoration and
separation with high probability is an interesting open research topic. Fur-
thermore, a detailed exploration of more real-world applications using the
restoration and separation techniques analyzed in this paper is left for future
work.

Appendix A. Proof of Theorem 1

The proof follows closely that given in [31, Thm. 2.1] and relies on tech-
niques developed earlier in [20, 31, 43].

Appendix A.1. Prerequisites
We start with the following definitions. Let h = x̂− x, where x̂ denotes

the solution of BPDN and x is the vector to be recovered. Furthermore,
define h0 = PXh with the set X = suppnx

(x). The proof relies on the
following facts.

Cone constraint. Let e0 = 2‖x− xX‖1 with xX = PXx; then [20, 43, 46]

‖h− h0‖1 ≤ ‖h0‖1 + e0 (A.1)

which follows from the fact that BPDN delivers a feasible solution x̂ satisfying
‖x‖1 ≥ ‖x̂‖1 and from

‖x‖1 ≥ ‖x̂‖1 = ‖x̂X‖1 + ‖x̂X c‖1 = ‖xX + h0‖1 + ‖h− h0 + hX c‖1

≥ ‖xX‖1 − ‖h0‖1 + ‖h− h0‖1 − ‖xX c‖1 .
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Application of the reverse triangle inequality to the left-hand side term
of (A.1) yields the following useful bound:

‖h‖1 ≤ 2‖h0‖1 + e0. (A.2)

Tube constraint. We furthermore have [43, 46]

‖Ah‖2 = ‖Ax̂− y − (Ax− y)‖2

≤ ‖Ax̂− y‖2 + ‖Ax− y‖2 ≤ η + ε. (A.3)

Coherence-based restricted isometry property (RIP). Since h0 is perfectly nx-
sparse, Geršgorin’s disc theorem [55, Thm. 6.1.1] applied to ‖Ah0‖2

2 yields

(1− µa(nx − 1))‖h0‖2
2 ≤ ‖Ah0‖2

2 ≤ (1 + µa(nx − 1))‖h0‖2
2 . (A.4)

Appendix A.2. Bounding the error ‖h0‖2 on the signal support
The goal of the following steps is to bound the recovery error ‖h0‖2 on

the support set X . We follow the steps in [31] to arrive at the following chain
of inequalities:∣∣hHAHAh0

∣∣ ≥ ∣∣hH0 AHAh0

∣∣− ∣∣(h− h0)HAHAh0

∣∣
≥ (1− µa(nx − 1)) ‖h0‖2

2 −

∣∣∣∣∣∑
k∈X

∑
`∈X c

[hH0 ]ka
H
k a`[h]`

∣∣∣∣∣ (A.5)

≥ (1− µa(nx − 1)) ‖h0‖2
2 − µa‖h0‖1 ‖h− h0‖1 (A.6)

≥ (1− µa(nx − 1)) ‖h0‖2
2 − µa‖h0‖1 (‖h0‖1 + e0) (A.7)

≥ (1− µa(nx − 1)) ‖h0‖2
2 − µanx‖h0‖2

2 − µa
√
nx‖h0‖2 e0

(A.8)

= (1− µa(2nx − 1)) ‖h0‖2
2 − µa

√
nx‖h0‖2 e0, (A.9)

where (A.5) follows from (A.4), (A.6) is a consequence of
∣∣aHk a`∣∣ ≤ µa, ∀k 6= `,

(A.7) results from the cone constraint (A.1), and (A.8) from the Cauchy-
Schwarz inequality. We emphasize that (A.9) is crucial, since it determines
the recovery condition for BPDN. In particular, if the first RHS term in (A.9)
satisfies (1−µa(2nx−1)) > 0 and h0 6= 0Na×1, then the error ‖h0‖2 is bounded
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from above as follows:

‖h0‖2 ≤
∣∣hHAHAh0

∣∣+ µa
√
nx‖h0‖2 e0

(1− µa(2nx − 1)) ‖h0‖2

(A.10)

≤
‖Ah‖2 ‖Ah0‖2 + µa

√
nx‖h0‖2 e0

(1− µa(2nx − 1)) ‖h0‖2

(A.11)

≤
(ε+ η)

√
1 + µa(nx − 1)‖h0‖2 + µa

√
nx‖h0‖2 e0

(1− µa(2nx − 1)) ‖h0‖2

(A.12)

=
(ε+ η)

√
1 + µa(nx − 1) + µa

√
nxe0

1− µa(2nx − 1)
. (A.13)

Here, (A.10) is a consequence of (A.9), (A.11) follows from the Cauchy-
Schwarz inequality, and (A.12) results from the tube constraint (A.3) and
the RIP (A.4). The case h0 = 0Na×1 is trivial as it implies ‖h0‖2 = 0.

Appendix A.3. Bounding the recovery error ‖h‖2

We are now ready to derive an upper bound on the recovery error ‖h‖2.
To this end, we first bound ‖Ah‖2

2 from below as in [31]

‖Ah‖2
2 = hHAHAh =

∑
k,`

[hH ]ka
H
k a`[h]`

=
∑
k

‖ak‖2
2 |[h]k|2 +

∑
k,`,k 6=`

[hH ]ka
H
k a`[h]`

≥ ‖h‖2
2 − µa

∑
k,`,k 6=`

∣∣[hH ]k[h]`
∣∣ (A.14)

= ‖h‖2
2 + µa

∑
k

|[h]k|2 − µa
∑
k,`

∣∣[hH ]k[h]`
∣∣

= (1 + µa)‖h‖2
2 − µa‖h‖

2
1 , (A.15)

where (A.14) follows from ‖ak‖2 = 1, ∀k, and
∣∣aHk a`∣∣ ≤ µa, ∀k 6= `. With

(A.15), the recovery error can be bounded as

‖h‖2
2 ≤
‖Ah‖2

2 + µa‖h‖2
1

1 + µa

≤ (ε+ η)2 + µa (2‖h0‖1 + e0)2

1 + µa
, (A.16)
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where (A.2) is used to arrive at (A.16). By taking the square root of
(A.16) and applying the Cauchy-Schwarz inequality, we arrive at the fol-
lowing bound:

‖h‖2 ≤

√
(ε+ η)2 + µa (2‖h0‖1 + e0)2

√
1 + µa

≤
(ε+ η) +

√
µa (2‖h0‖1 + e0)
√

1 + µa
. (A.17)

Finally, using ‖h0‖1 ≤
√
nx‖h0‖2 with the bound in (A.13) followed by alge-

braic simplifications yields

‖h‖2 ≤
(ε+ η) +

√
µa
(
2
√
nx‖h0‖2 + e0

)
√

1 + µa

≤ (ε+ η)
1− µa(2nx − 1) + 2

√
µanx

√
1 + µa(nx − 1)

√
1 + µa (1− µa(2nx − 1))

+ e0

√
µa + µ2

a

(1− µa(2nx − 1))

= C0(η + ε) + C1‖x− xX‖1 ,

which concludes the proof. We note that by imposing a more restrictive
condition than nx < (1 + 1/µa)/2 in (2), one may arrive at smaller constants
C0 and C1 (see [46] for the details).

Appendix B. Proof of Theorem 2

The proof is accomplished by deriving an upper bound on the resid-
ual errors resulting from direct restoration. Furthermore, we show that the
recovery condition (7) guarantees the existence of RE = IM − BEB

†
E and

(REAX )†.

Appendix B.1. Bounding the recovery error
We start by bounding the recovery error of DR as

‖x− x̂‖2 ≤ ‖xX − x̂X‖2 + ‖xX c − x̂X c‖2

≤ ‖xX − x̂X‖2 + ‖xX c‖1 . (B.1)
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The only term in (B.1) that needs further investigation is ‖xX − x̂X‖2. As
shown in (5), we have

[x̂]X = (REAX )†REz = xX + (REAX)†RE(AxX c + n)

and hence, it follows that

‖xX − x̂X‖2 ≤
∥∥(REAX )†REv

∥∥
2
, (B.2)

where v = AxX c + n represents the residual error term. The remainder of
the proof amounts to deriving an upper bound on the RHS in (B.2). We
start with the definition of the pseudo-inverse∥∥(REAX )†REv

∥∥
2

=
∥∥(AH

XREAX )−1AH
XREv

∥∥
2

(B.3)

≤
∥∥(AH

XREAX )−1
∥∥

2

∥∥AH
XREv

∥∥
2
, (B.4)

where (B.3) is a consequence of RE = RH
E RE , and (B.4) follows from the

Rayleigh-Ritz theorem [55, Thm. 4.2.2]. We next individually bound the
RHS terms in (B.4) from above.

Appendix B.2. Bounding the `2-norm of the inverse
The bound on the norm of the inverse in (B.4) is based upon an idea

developed in [24]. Specifically, we use the Neumann series (I|X | − K)−1 =
I|X | +

∑∞
k=1 K

k [56, Lem. 2.3.3] to obtain∥∥(AH
XREAX )−1

∥∥
2

=
∥∥∥(AH

XAX −AH
XBEB

†
EAX )−1

∥∥∥
2

=
∥∥(I|X | −K)−1

∥∥
2

=

∥∥∥∥∥I|X | +
∞∑
k=1

Kk

∥∥∥∥∥
2

≤ 1 +

∥∥∥∥∥
∞∑
k=1

Kk

∥∥∥∥∥
2

≤ 1 +
∞∑
k=1

‖K‖k2

=
1

1− ‖K‖2

, (B.5)

which is guaranteed to exist whenever ‖K‖2 < 1 with

K = I|X | −AH
XAX + AH

XBEB
†
EAX .
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We next derive a sufficient condition for which ‖K‖2 < 1 and, hence, the
matrix AH

XREAX is invertible. We bound ‖K‖2 from above as

‖K‖2 ≤
∥∥I|X | −AH

XAX
∥∥

2
+
∥∥∥AH
XBEB

†
EAX

∥∥∥
2

(B.6)

≤ µa(nx − 1) +
∥∥AH
XBE(B

H
E BE)

−1BH
E AX

∥∥
2
, (B.7)

where (B.6) results from the triangle inequality and (B.7) is a consequence
of Geršgorin’s disc theorem [55, Thm. 6.1.1] applied to the `2-norm of the
hollow matrix I|X | −AH

XAX . We next bound the RHS term in (B.7) as∥∥AXBE(BH
E BE)

−1BH
E AX

∥∥
2
≤
∥∥AH
XBE

∥∥
2

∥∥(BH
E BE)

−1
∥∥

2

∥∥BH
E AX

∥∥
2

(B.8)

≤
∥∥AH
XBE

∥∥2

F

∥∥(BH
E BE)

−1
∥∥

2
(B.9)

≤ nxneµ
2
m

∥∥(BH
E BE)

−1
∥∥

2
(B.10)

≤ nxneµ
2
m

λmin(BH
E BE)

≤ nxneµ
2
m

[1− µb(ne − 1)]+
, (B.11)

where (B.8) follows from the `2-matrix-norm bound, (B.9) from
∥∥AH
XBE

∥∥
2
≤∥∥AH

XBE
∥∥
F
and

∥∥AH
XBE

∥∥
F

=
∥∥BH
E AX

∥∥
F
, and (B.10) from∥∥AH

XBE
∥∥2

F
=
∑
k∈X

∑
`∈E

∣∣aHk b`∣∣2 ≤∑
k∈X

∑
`∈E

µ2
m = nxneµ

2
m.

Note that (B.11) requires ne < 1+1/µb, which provides a sufficient condition
for which the pseudo-inverse B†E exists.

Combining (B.5), (B.7), and (B.11) yields the upper bound∥∥(AH
XREAX )−1

∥∥
2
≤ 1

1− µa(nx − 1)− nxneµ2m
[1−µb(ne−1)]+

, (B.12)

which requires

1− µa(nx − 1)− nxneµ
2
m

[1− µb(ne − 1)]+
> 0 (B.13)

for the matrix (AH
XREAX )−1 to exist. We emphasize that the condition

(B.13) determines the recovery condition for DR (7). In particular, if

(1− µa(nx − 1)) [1− µb(ne − 1)]+ > nxneµ
2
m

then (B.13) and ne < 1 + 1/µb are both satisfied and, hence, the recovery
matrix (REAX )†RE required for DR exists.
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Appendix B.3. Bounding the residual error term
We now derive an upper bound on the RHS residual error term in (B.4)

according to ∥∥AH
XREv

∥∥
2
≤
∥∥AH
Xv
∥∥

2
+
∥∥∥AH
XBEB

†
Ev
∥∥∥

2

≤
√
nx‖v‖2 +

∥∥∥AH
XBEB

†
Ev
∥∥∥

2
, (B.14)

where (B.14) is a result of∥∥AH
Xv
∥∥

2
=

√∑
k∈X

|aHk v|
2 ≤

√∑
k∈X

‖ak‖2
2 ‖v‖

2
2 ≤
√
nx‖v‖2 . (B.15)

The bound on the second RHS term in (B.14) is obtained by carrying out
similar steps used to arrive at (B.11), i.e.,∥∥∥AH

XBEB
†
Ev
∥∥∥

2
≤
∥∥AH
XBE

∥∥
2

∥∥(BH
E BE)

−1
∥∥

2

∥∥BH
E v
∥∥

2

≤
√
nxneµ2

m

λmin(BH
E BE)

∥∥BH
E v
∥∥

2

≤
ne
√
nxµ2

m

[1− µb(ne − 1)]+
‖v‖2 . (B.16)

Finally, we bound the `2-norm of the residual error term according to

‖v‖2 = ‖AxX c + n‖2 ≤ ‖AxX c‖2 + ‖n‖2 ≤ ‖xX c‖1 + ‖n‖2 (B.17)

since

‖AxX c‖2 =

∥∥∥∥∥∑
k∈X c

ak[x]k

∥∥∥∥∥
2

≤
∑
k∈X c

‖ak[x]k‖2 = ‖xX c‖1 .

Appendix B.4. Putting the pieces together
In order to bound the recovery error on the support set X , we combine

(B.12) with (B.14) and (B.16) to arrive at

∥∥(REAX )†REv
∥∥

2
≤

(
[1− µb(ne − 1)]+ + neµm

)√
nx

(1− µa(nx − 1)) [1− µb(ne − 1)]+ − nxneµ2
m

‖v‖2

= c‖v‖2 . (B.18)
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Finally, using (B.17) in combination with (B.1), (B.2), and (B.18) leads to

‖x− x̂‖2 ≤ cε+ (c+ 1)‖x− xX‖1

= C3ε+ C4‖x− xX‖1 ,

which concludes the proof.

Appendix C. Proof of Theorem 3

We first derive a set of key properties of the matrix Ã = REA, which are
then used to proove the main result following the steps in Appendix A.

Appendix C.1. Properties of the matrix Ã

It is important to realize that BP restoration operates on the input-output
relation

REz = RE (Ax + BeE + n) = Ãx + REn (C.1)

with RE = IM − BEB
†
E and Ã = REA. The recovery condition for BP

restoration (9), which will be derived next, also ensures that RE exists; this
is due to fact that the recovery condition for DR (7) ensures that RE exists
and the condition for BP restoration (9) is met whenever (7) is satisfied.

In order to adapt the proof in Appendix A for the projected input-output
relation in (C.1), the following properties of Ã are required.

Tube constraint. Analogously to Appendix A, we obtain∥∥∥Ãh
∥∥∥

2
≤ ‖RE(Ax̂− z)‖2 + ‖RE(Ax− z)‖2

≤ η + ‖REn‖2 ≤ η + ε,

where the last inequality follows from the fact that RE is a projection matrix
and, hence, ‖REn‖2 ≤ ‖n‖2 ≤ ε.

Coherence-based bound on the RIC. We next compute a coherence-based
bound on the RIC for the matrix Ã. To this end, let h0 be perfectly nx-
sparse and∥∥∥Ãh0

∥∥∥2

2
=
∣∣∣hH0 AHAh0 − hH0 AHBEB

†
EAh0

∣∣∣ (C.2)

≤ (1 + µa(nx − 1))‖h0‖2
2 +

∣∣∣hH0 AHBEB
†
EAh0

∣∣∣ , (C.3)
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where (C.2) follows from RH
E RE = RE and (C.3) from Geršgorin’s disc the-

orem [55, Thm. 6.1.1]. Next, we bound the second RHS term in (C.3) as
follows: ∣∣∣hH0 AHBEB

†
EAh0

∣∣∣ =
∣∣hH0 AHBE(B

H
E BE)

−1BH
E Ah0

∣∣
≤ λ−1

min(BH
E BE)

∥∥BH
E Ah0

∥∥2

2
(C.4)

≤ λ−1
min(BH

E BE)
∥∥BH
E AX

∥∥2

2
‖h0‖2

2 (C.5)

≤ nxneµ
2
m

[1− µb(ne − 1)]+
‖h0‖2

2 (C.6)

where (C.4) follows from [55, Thm. 4.2.2], (C.5) from the `2-norm inequality.
The inequality (C.6) results from∥∥BH

E AX
∥∥2

2
≤
∥∥BH
E AX

∥∥2

F
=
∑
`∈E

∑
k∈X

∣∣bH` ak∣∣2 ≤ nxneµ
2
m.

Note that (C.6) requires ne < 1 + 1/µb, which is a sufficient condition for
(BH
E BE)

−1 to exist. Note that ne < 1 + 1/µb holds whenever the recovery
condition for BP-RES in (7) is satisfied. Combining (C.3) with (C.6) results
in

‖REAh0‖2
2 ≤
(

1 + µa(nx − 1) +
nxneµ

2
m

[1− µb(ne − 1)]+

)
‖h0‖2

2 (C.7)

= (1 + δ̂)‖h0‖2
2 .

We next compute the lower bound as∥∥∥Ãh0

∥∥∥2

2
=
∣∣∣hH0 AHAh0 − hH0 AHBEB

†
EAh0

∣∣∣
≥ (1− µa(nx − 1))‖h0‖2

2 −
∣∣∣hH0 AHBEB

†
EAh0

∣∣∣ (C.8)

≥ (1− µa(nx − 1))‖h0‖2
2 −

nxneµ
2
m

[1− µb(ne − 1)]+
‖h0‖2

2 (C.9)

≥
(

1− µa(nx − 1)− nxneµ
2
m

[1− µb(ne − 1)]+

)
‖h0‖2

2 (C.10)

= (1− δ̂)‖h0‖2
2

where (C.8) follows from [55, Thm. 6.1.1] and (C.9) is obtained by carrying
out similar steps used to arrive at (C.6). Note that (C.7) and (C.10) provide
a coherence-based upper bound δ̂ on the RIC of the projected matrix Ã =
REA.
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Upper bound on the inner products. The proof detailed in Appendix A re-
quires an upper bound on the inner products of columns of the matrix Ã.
For i 6= j, we obtain∣∣ãHi ãj∣∣ =

∣∣aHi REaj∣∣ ≤ ∣∣aHi aj∣∣+
∣∣∣aHi BEB†Eaj∣∣∣

≤ µa +
∣∣aHi BE(BH

E BE)
−1BH

E aj
∣∣ (C.11)

≤ µa +

∣∣aHi BEBH
E aj

∣∣
[1− µb(ne − 1)]+

(C.12)

≤ µa +

∥∥BH
E ai
∥∥

2

∥∥BH
E aj

∥∥
2

[1− µb(ne − 1)]+
, (C.13)

where (C.11) follows from the definition of the coherence parameter µa,
(C.12) is a consequence of Geršgorin’s disc theorem, and (C.13) from the
Cauchy-Schwarz inequality. Since

∥∥BH
E ai
∥∥

2
=

√∑
k∈E

|bHk ai|
2 ≤

√
neµ2

m

for all i = 1, . . . , Na, the inner products with i 6= j satisfy

∣∣ãHi ãj∣∣ ≤ µa +
neµ

2
m

[1− µb(ne − 1)]+
, a. (C.14)

Lower bound on the column norm. The last prerequisite for the proof is a
lower bound on the column-norms of Ã. Application of the reverse triangle
inequality, using the fact that ‖ai‖2 = 1, ∀i, and carrying out the similar
steps used to arrive at (C.14) results in

‖ãi‖2
2 = ‖REai‖2

2 ≥
∣∣aHi ai∣∣− ∣∣∣aHi BEB†Eai∣∣∣

≥ 1− neµ
2
m

[1− µb(ne − 1)]+
, b.

Appendix C.2. Recovery guarantee
We now derive the recovery condition and bound the corresponding error

‖h‖2. The proof follows that of Appendix A. For the sake of simplicity of
exposition, we make use of the previously defined quantities δ̂, a, and b.
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Bounding the error on the signal support. We start by bounding the error
‖h0‖2 as follows:∣∣∣hHÃHÃh0

∣∣∣ ≥ ∣∣∣hH0 ÃHÃh0

∣∣∣− ∣∣∣(h− h0)HÃHÃh0

∣∣∣ (C.15)

≥ (1− δ̂)‖h0‖2
2 − anx‖h0‖2

2 − a
√
nx‖h0‖2 e0

= c‖h0‖2
2 − a

√
nx‖h0‖2 e0

with

c , 1− δ̂ − anx = 1− µa(2nx − 1)− 2nxneµ
2
m

[1− µb(ne − 1)]+
.

Note that the parameter c is crucial, since it determines the recovery condi-
tion for BP-RES (9). In particular, c > 0 is equivalent to (9)

[1− µa(2nx − 1)]+ [1− µb(ne − 1)]+ > 2nxneµ
2
m.

If this condition is satisfied, then we can bound ‖h0‖2 from above as follows:

‖h0‖2 ≤
(ε+ η)

√
1 + δ̂ + a

√
nxe0

c
.

Bounding the recovery error. We next compute an upper bound on ‖h‖2. To

this end, we start with a lower bound on
∥∥∥Ãh

∥∥∥2

2
as∥∥∥Ãh

∥∥∥2

2
≥ (b+ a)‖h‖2

2 − a‖h‖
2
1 = (1 + µa)‖h‖2

2 − a‖h‖
2
1 ,

since b+ a = 1 + µa. Finally, we bound ‖h‖2 as follows:

‖h‖2 ≤ (ε+ η)
c+ 2

√
anx
√

1 + δ̂√
1 + µac

+ e0

√
a
√

1 + µa
c

= C5(η + ε) + C6‖x− xX‖1 ,

where the constants C5 and C6 depend on µa, µb, nx, and ne, which concludes
the proof.

Appendix D. Proof of Theorem 4

In order to prove the recovery guarantee in Theorem 4, we start by
deriving a coherence-based bound on the RIC of the concatenated matrix
D = [A B ] which is then used to prove the main result.
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Appendix D.1. Coherence-based RIC for D = [A B ]

In this section, we obtain an equivalent bound to that in Appendix A.1
for the dictionary D that depends only on the coherence parameters µa, µb,
µm, and µd, and the total number of nonzero entries denoted by w = nx+ne.

Bounds that are explicit in nx and ne. Let h0 = [hTx hTe ]T where hx =
PX (x̂− x) and he = PE(ê− e) are perfectly nx and ne sparse, respectively.
We start by the lower bound on the squared `2-norm according to

‖Dh0‖2
2 =

[
hHx hHe

] [ AHA AHB
BHA BHB

] [
hx
he

]
= hH0

[
INa 0
0 INb

]
h0 + hH0

[
AHA− INa AHB

BHA BHB− INb

]
h0

≥ ‖h0‖2
2 −

∥∥∥∥[ AH
XAX − I|X | AH

XBE
BH
XAE BH

E BE − I|E|

]∥∥∥∥
2

‖h0‖2
2 , (D.1)

where (D.1) follows from the reverse triangle inequality and elementary prop-
erties of the `2 matrix norm. We next compute an upper bound on the matrix
norm in (D.1) as follows:∥∥∥∥[ AH

XAX − I|X | 0
0 BH

E BE − I|E|

]
+

[
0 AH

XBE
BH
XAE 0

]∥∥∥∥
2

≤ max
{∥∥AH

XAX − I|X |
∥∥

2
,
∥∥BH
E BE − I|E|

∥∥
2

}
+
∥∥AH
XBE

∥∥
2
, (D.2)

where (D.2) is a result of the triangle inequality for matrix norms and the
facts that the spectral norm of both a block-diagonal matrix and an anti-
block-diagonal matrix is given by the largest among the spectral norms of
the individual nonzero blocks. The application of Geršgorin’s disc theorem
to the max{·}-term in (D.2) and

∥∥AH
XBE

∥∥
2
≤
∥∥AH
XBE

∥∥
F
≤
√∑

k∈X

∑
`∈E

|aHk b`|
2 ≤

√
nxneµ2

m

leads to

max
{∥∥AH

XAX − I|X |
∥∥

2
,
∥∥BH
E BE − I|E|

∥∥
2

}
+
∥∥AH
XBE

∥∥
2

≤ max {µa(nx − 1), µb(ne − 1)}+
√
nxneµ2

m.
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Hence, we arrive at the following lower bound

‖Dh0‖2
2 ≥ ‖h0‖2

2

(
1−max {µa(nx − 1), µb(ne − 1)} −

√
nxneµ2

m

)
. (D.3)

By performing similar steps used to arrive at (D.3) we obtain the upper
bound

‖Dh0‖2
2 ≤ ‖h0‖2

2

(
1 + max {µa(nx − 1), µb(ne − 1)}+

√
nxneµ2

m

)
. (D.4)

Bounds depending on w = nx + ne. Both bounds in (D.3) and (D.4) are
explicit in nx and ne. Since the individual sparsity levels nx and ne are
unknown prior to recovery, a coherence-based RIP bound, which depends
solely on the total number w = nx + ne of nonzero entries of h0 rather than
on nx and ne, is required. To this end, we define the function

g(nx, ne) = max{µa(nx − 1), µb(ne − 1)}+
√
nxneµ2

m

and find the maximum

ĝ(w) = max
0≤nx≤w

g(nx, w − nx). (D.5)

Since ĝ(w) only depends on w = nx+ne and g(nx, ne) ≤ ĝ(w), we can replace
g(nx, ne) by ĝ(w) in both bounds (D.3) and (D.4).

We start by computing the maximum in (D.5). Assume µa(nx − 1) ≥
µb(ne − 1) and consider the function

ga(nx, w − nx) = µa(nx − 1) +
√
nx(w − nx)µ2

m. (D.6)

It can easily be shown that ga(nx, w−nx) is strictly concave in nx for all 0 ≤
nx ≤ w and 0 ≤ w < ∞ and, therefore, the maximum is either achieved at
a stationary point or a boundary point. Standard arithmetic manipulations
show that the (global) maximum of the function in (D.6) corresponds to

ĝa(w) =
1

2

(
µa(w − 2) + w

√
µ2
a + µ2

m

)
. (D.7)

For the case where µa(nx − 1) < µb(ne − 1), we carry out similar steps used
to arrive at (D.6) and exploit the symmetry of (D.5) to arrive at

ĝb(w) =
1

2

(
µb(w − 2) + w

√
µ2
b + µ2

m

)
.
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Hence, by assuming that µb ≤ µa, we obtain upper and lower bounds on
(D.3) and (D.4) in terms of w = nx + ne with the aid of (D.7) as follows:

(1− ĝa(w))‖h0‖2
2 ≤ ‖Dh0‖2

2 ≤ (1 + ĝa(w))‖h0‖2
2 . (D.8)

It is important to realize that for some values of µa, µm, and w, the
bounds in (D.8) are inferior to those obtained when ignoring the structure
of the concatenated dictionary D, i.e.,

(1− µd(w − 1))‖h0‖2
2 ≤ ‖Dh0‖2

2 ≤ (1 + µd(w − 1))‖h0‖2
2 . (D.9)

with µd = max{µa, µb, µm}. However, for w ≥ 2, µm = µd, and

µa < µm +
µmw

2

(√
w − 2

w − 1
− 1

)
,

the RIP considering the structure of D in (D.8) turns out to be more tight
than (D.9). For other values of w and/or µa, (D.8) turns out to be less tight
than (D.9). In order to tighten the RIP in both cases, we consider(

1− δ̂w
)
‖h0‖2

2 ≤ ‖Dh0‖2
2 ≤

(
1 + δ̂w

)
‖h0‖2

2 ,

where the coherence-based upper bound on the RIC of the concatenated
dictionary D = [A B ] corresponds to

δ̂w = min

{
1

2

(
µa(w − 2) + w

√
µ2
a + µ2

m

)
, µd(w − 1)

}
.

Appendix D.2. Recovery guarantee
We now bound the error ‖h‖2 and derive the recovery guarantee by fol-

lowing the proof in Appendix A. In the following, we only show the case
where

1

2

(
µa(w − 2) + w

√
µ2
a + µ2

m

)
≤ µd(w − 1).

The other case, i.e., where the standard RIP (D.9) is tighter than (D.8),
readily follows from the proof in Appendix A, by replacing A by D, µa by
µd, and nx by w.
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Bounding the error on the signal support. We start by bounding the error
‖h0‖2. Since µm ≤ µd, we arrive at∣∣hHDHDh0

∣∣ ≥ ∣∣hH0 DHDh0

∣∣− ∣∣(h− h0)HDHDh0

∣∣
≥ (1− δ̂w)‖h0‖2

2 − µdw‖h0‖2
2 − µd

√
w‖h0‖2 e0

= d‖h0‖2
2 − µd

√
w‖h0‖2 e0

with

d , 1− δw − µdw = 1− w

2

(
µa + 2µd +

√
µ2
a + µ2

m

)
+ µa.

It is important to note that d is crucial for the recovery guarantee as it
determines the condition for which BP-SEP in (13) enables stable separation.
Specifically, if d > 0 or, equivalently, if

w <
2(1 + µa)

µa + 2µd +
√
µ2
a + µ2

m

then the error on the signal support ‖h0‖2 is bounded from above as

‖h0‖2 ≤
(ε+ η)

√
1 + δ̂w + µd

√
we0

d
.

where e0 = 2‖w −wW‖1 with W = suppw(w).

Bounding the recovery error. Analogously to the derivation in Appendix A.3,
we now compute an upper bound on ‖h‖2, i.e.,

‖Dh‖2
2 ≥ (1 + µd)‖h‖2

2 − µd‖h‖
2
1 . (D.10)

Finally, bounding ‖h‖2 similarly to Appendix A.3 results in

‖h‖2 ≤ (ε+ η)
d+ 2

√
µdw

√
1 + δ̂w√

1 + µdd
+ e0

√
µd(d+ 2µdw)
√

1 + µdd

= C7(η + ε) + C8‖w −wW‖1 .

where the constants C7 and C8 depend on the parameters µa, µb, µm, µd,
and w = nx + ne, which concludes the proof.
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